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———;bobtaining a wel' ~osed mathematical model with time scales suitable

for large scale atmospheric flows. Three types of conditons are
considered at the lateral boundaries: 1) outflow, 2) inflow (driven’
velocity is specified and is essentially independent of the internal
flow, 3) infgow (passive) - inflow is created primarily by the inter
flow configuration. The upper boundary conditions include the?

~two derive ‘4ﬂr+if3 the continuous and discontinuous boundary

conditions, and a third condition, which is designed to allow the
flow to propagate independently of the height of the region.
Numerical solutions are obtained for various test cases, and

convergence of the calculations is demonstrated. One sees that, although

the calculations are reasonable, both from a mathematical and
physical standpoint, the various calculations differ from each

other very significantly, both qualitatively and quantitatively.

It is suggested, therefore, that the process of specifying and
evaluating boundary conditions will proceed more efficiently

if more physical understanding is obtained in regard to relatively
simple flows, such as a wave entering a stationary flow at a lateral

boundary.

[1] P. Gordon, "Quasisteady Primitive Equations with Associated
Upper Boundary Conditions", J. Math. Physics, V.20, April, 1979.
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Lateral Boundary Conditions for Quasisteady

Atmospheric Flows

Section I: Introduction

In ref. [1) quasisteady equations were derived on the basis of scale
assumptions approximately satisfied in large-scale atmospheric flow. Several
upper boundary conditions were also derived, but the lateral boundaries were
severely simplified. The underlying philosophy used in the above work was as
follows: Assuming that the complete time-dependent problem is well-posed
(this includes specification of boundary and initial conditions), derive internal
equations and boundary conditions by employing clearly stated scale assumptions.
In the present paper, an attempt is made to extend this approach to include lateral
boundary conditions.

Difficulties with boundary conditions, particularly at free boundaries,
arise in almost all areas of fluid dvnamics. In the case of supersonic flow,
the problems are generally simpler, since one can expect perturbations at such
boundaries not to feed back upstream (see, for example, ref.[2]). Mathematically
the hydrodynamic equations, revresenting a hyperbolic system, are reasonably
well understood. This is particularly true for the one-dimensional case, although
in two or more space dimensions, the existence and uniqueness theorems are not
so well formulated [3]. It is in fact physical understanding that is lacking:

It is perhaps impossible to specify physically "accurate'" conditions at these
free boundaries. This situation.has so deteriorated that the scientist engaged
in computational studies feels free in many instances to ignore the physics and

mathematics. Chen [4] discusses "...computational boundary conditions, in contrast




to physical boundary conditions which are originally required..." Also,

in his survey article (5, p.19], Belotserkovskii can write as follows:

"...the basic principle underlying the statement
of the conditions is that no substantial disturbances
should penetrate through the "open" boundaries of the

region into the computational region."

Various authors have written of the necessity of neither over-specifying
nor under-specifving the number of boundary conditions (6,7,8]. 1In large E
scale atmospheric flow an additional stumblines block presents itself: Because
of "simplifying" assumptions, such as the hydrostatic assumption, the equations

are no longer hyperbolic. The question then arises anew as to even the proper

number of boundary conditions. The paver of Oliger & Sundstrdm (9] would seem
to indicate that there is no "proper" number: A major result in this paper is
that the hydrostatic model is not well-nrosed mathematically.

The above result has been quoted often in the last few years. Unfortunately,
at least in the author's view, the result has at times been intvrp;oted to mean
that the researcher (since the equations are not well-nosed anyway) can now
experiment freely in terms of boundary conditions. In fact, Oliger and
Sundstrdm's work does produce the expected result: Having made quasisteady
assumptions (the hydrostatic eocuation represents such an assumption), it should
not be surprising that not all boundary conditions are still compatible.

This turn away from the physics is disconcerting. Historically, mathematics
has been productive to the applied community when closely tied to the physical
problem. Hadamard [10], who seems to have first introduced the concept of a
well-posed problem, emphasized the importance of maintaining contact with the

physical problem. In [10, p.32] he writes as follows:




"... But it is remarkable, on the other hand,
that a sure guide is found in physical interpretation:
An analytical problem always being correctly set, in

our use of the phrase, when it is the translation of

some mechanical or physical question..."
Hadamard's specific concern was different than ours (he was objecting to

the mathematical assumption of analytic data), but his point is still valid.

Tt appears to the author that in the area of computation the atmospheric

physicist has relinquished much of his resvonsibility to the mathematician/

v

numerical analyst. This is not intended to disrarage the latter (if anything,
the author would bo so classified). Rather the intent is to emphasize the
importance of at least partially Judging the results of numerical computations
on the basis of the physical problem that one vostulates is being solved.

For example, "reflective' behavior at a boundarv may in some sense be

undesirable, and its existence may in some sense be sisnificant for diagnostic
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purposes. However, such a phenomenon remains at best a syvmptom. Since one

does not define a physical problem by specifying '"non-reflective", neither

Py e R e

should one impose such a criterion on the mathematical formulation. And, needless

to say, neither should it be imposed on the numerics.

AR

One vossible procedure for specifying outflow boundary conditions is to
first assume physically a relatively simple form for the solution outside the
region, and then specify boundary conditions associated with this flow. (one
boundary condition proposed in this paper is of this form). In the atmospheric
case such a procedure is difficult because so few "simple" solutions are known.

This is particularly due to the fact that in an atmospheric environment even

simple flows, such as a wave entering from a lateral boundary into a regiaon of

stationary flow, have extremely complicated solutions. Nevertheless, this lack




of knowledge is highly detrimental to both the process of svecifying
boundary conditions and to the evaluation of corresponding calculations.
The point to be emphasized is that the boundary conditions, however
specified, must be interpreted pnysically in terms of what is inherently
being assumed regarding the external flow configuration. This philosophy
does differ greatly from that employed by most atmospheric scientists engaged
in numerical calculations. Many of the techniques presently in use (see,
for example, Orlanski [11], Perkey & Kreitzbereg [12], and Kemp and Lilley
[13)) share the common characteristics of not referrins to the external flow.
Boundary conditions are discussed for the time-denendernt case in Section II
and for the quasisteady case in Section ITI. Calculations using these conditions
are described in Section IV, V and VI: Section IV considers a problem
involving internally cenerated flow, Section V considers a bell-shaped wave
entering at a lateral boundary, and Section VI considers a "flat" wave
entering at a lateral boundary. Section VIT summarizes possible conclusions
of the study.
An accuracy study, in terms of a decreased mesh size, was conducted for
all calculations. Results of this study are shown for the bell-wave calculation

in Section V.




Section II: Specification of Boundary Conditions for the Complete
Time-Dependent Problem
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The variables to be used are similar to those defined in ref. 1, except

that the velocity components are nov normaliszed:

: Ve (u-av) AwT (1.1)
Voa (v o+ au) e (1.2)
v UMY (1.3)
o « i J (1)
o

Using the tranaformation

=y (2.1)
n = x/l, (2.2)
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The hydrodynamic equations take the following form:
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The various parameters defined above are as follows:

a =S, reg o *we, +ug,

= + 2
= T R/cv » 8L =y,

Bap/p,, T-= T/Tgs T} = position of the lower boundary,

f2 = position of unper boundary, p = density, T = temperature,

v = vertical velocity, u = horizontal velocity, R = gas constant,
e specific heat, x = horizontal distance, z = vertical distance,
t = time, @ = acceleration due to gravity, p = pressure = oRT, °0 and

To are reference values.

The equations for the floating top and for the continuous and discontinuous

boundary conditions [1: eqs. 10, 15, 21] take respectively the following form:

(£3) = WIFa7 4.1)
3 -1 ”
e " -('L—)_cs - W 4.2)
'L%:lll w w <0
s . e
T =
T 4.3)
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Remark: In ref. 1 the discontinuous boundary condition was written incorrectly

in that the scale factor (1 + .z)-k wvas omitted from the first term on the right.




A solution is to be obtained in the region 0 < g <1, 0 < n <1,

0O<r < Before considering the boundary conditions for eq.(3) at

end’

the four spatial boundaries, a general condition will be discussed.

A simplified one-dimensional model consists of the following equations:

‘ c2
R s T (5.1)
1, - = (y-l)nux (5.2)

Assumings a steady wave, moving with velocity ¢, One "watches" the wave

front approach by the equation,

g% - -c, (5.3

Substituting eq.(5.3), eas. (5.1) and (5.2) take the followins form:

(5.4)

5w MR G (5.5)

t Cw t
i
:
% In the case that o s {that is, a sound wave), eqas. (5.%) and (5.5) both
become the followine:
&
R "G (5.0)

Eq.(5.6) has been used as a boundary condition in earlier vork [14,15], where
the following physical intervretation was given:
At a boundary eq.(5.6) models a sound wvave,
moving into an infinite region of undisturbded
flow.
Fq.(5.6) will be used in this paper as a boundary conditon. An obvious
objection would be that the nroblem of most interest in atmospheric situations

will not be sound-wave dominated. It is temptins, therefore, to use °, in eq.(5.3)

as a "fudge-factor" by which one could obtain various forms of either eq.(5.h)




or #q.(5.5). This approach has been avoided, and in this regard the following

points are pertinent:

i) The philosophy of this paver, as discussed in the
introduction, is that the boundary conditions must

make an assumption in terms of the external flow. It
is incorrect, therefore, to calculate c, "adaptively"

from conditions of the internal flow.

ii) If specific two-dimensional steady-state solutions
to atmospheric problems were known, then perhans these
solutions could be used to derive more appropriate boundary

conditions.
Specific boundary conditions at the four spatial boundaries will now be given.
A) ¢ = 0 is assumed to be a solid boundary. An approvriate boundary
~J Cd
condition is w = 0. One can then obtain 0 and u from eqs.(3.1) and (3.2),

while » can be calculated from the following equation:

c c
S ~

oo 3 R I By o o M (71.1)
Eq. (7.1) represents the linearized characteristic variable which propagates
information from ¢ > 0 to ¢ = 0.
B) Because of eq. (4.1), ¢ = 1 is a streamline and conseouently one and
only one boundary condition is recuired here. The three differential equations

to be used are egs.(3.1) and (3.2), and the following characteristic equation:

(o] o
S Lot & S
BT T T e AL M (7.2)

Three upper boundary conditions will be considered.
1) Eq.(b.2): This equation was derived mathematically in ref (1] as the
continuous boundary condition. The interpretation given by (€) is not entirely

valid here because the derivative in eq.(L4.2) is with respect to t and not t.




Thus, with this boundary condition, the floatins tor pushes a line of
constant pressure ( namely £ = 1 ) into the "undisturbed" region and then
superimposes the change dictated by eq.(L4.2). 1In essence, the characteristic
variable of eq. (7.1) remains constant as it propagates from f > 1 to ¢ = 1:
this, of course, ignores hydrostatic changes far above 7 = 1,

2) Fa.(h.3): This equation was derived in [1) as the discontinuous
boundary condition. The physical interpretation is that the flow at 7 =1
behaves as a weak compression wave moving into a region of relatively undisturbed
flow. However, the assumption now is that the wave acts at the moving boundary
with respect to the undisturdbed hyvdrostatic pressure at that position. That is,
the change dictated by eq.(4.2) is imposed on the undisturbed region above
£ = 1: the second term on the richt in eq.(L4.3), for w > 0, accounts for the
hydrostatic chanse in pressure. Intervretation (6) would seem, therefore, to
be valid for this boundary condition.

3) Both eqs.(4.2) and (L.3) assume that the flow above f = 1 is relatively
undisturbed. There are situations where this physical assumption is clearly not
Justified. One such example would be that of an incoming lateral wave, with
the assumption that the wave is also entering above the region of computation.

A possible physical assumption for this flow would be as follows: The flow
above [ = 1 propagates laterally in a one-dimensional fashion, without being
significantly affected by the flow below £ = 1. This is modeled mathematically

by eq.(5.6), with interpretation (6). Transformines to 7. one obtains the following:

s Sy=dle o
et TN, —1—?;— (uT + ctuc) " (8)

C) At the lateral boundaries, three boundary conditions are required for

inflov and one otherwise (assuming subsonic flow). At a non-inflow point




eq.(3.1) can be used along with the following linearized characteristic

equations:
~~ ~
au - w = -(561-63) (9)
. c
~ syl + a2 ~ af) + n’
S o + H 1
u + oy W av_ (Gl + Py + aF3) (10)

In eq.(10), the plus sign is used at n = 1 and the negative sign at n = 0.

As at the other boundaries, the additional boundary conditions must reflect a
physical assumption regarding the outside flow. At the non-inflow points it
was decided to use either eq.(8), with the same physical interpretation, or
the condition u = 0.

At inflow points, ea.(10) - with the appropriate sign - can be used, but
three additional boundary conditions need to be specified. This is particularly
troublesome for O because of the fact that perturbations in O propagate so
slowly, namely.at the flow velocity: the computational times to be considered
in this paper are far less than the approximately 1L hours required to traverse
500 km. at 10m/sec. It was decided, therefore, to assume that O is not perturbed
by outside flow. Physically, this would imply that O is constant on incoming
streamlines, but it is not so clear how best to interpret this mathematically.
The following equation was eventually settled upon:

5 250 =0 (11)
In order to determine the remaining conditions, it is necessary to distinguish
between "forced" inflow and "passive" inflow. F¥orced inflow, which represents
physically an external flow being imnressed on the resion, can be modeled simply:
Fither velocity or pressure is specified. For purposes of the present paper, it

was decided to specify velocity:
e
u= hl(t,z) (12.1)

V= hy(t,2) (12.2)




1
E (Bqs. (10) and (11), then, essentinlly determine @ and n). lowever, the
] second case, where flow {a {n effect pulled i{nto the region because of
i internally produced gradients, is more complicated, One possible phyrical
; agsumption would be that the wave enters as a sound wave normal to the surface,
é \ Mathematically, this translates to eqa.(8) and v = 0,
'% : Summarizing, eq.(3) at {nterior points and the following equations at
% boundary points are assumed to define a well-nosed mathematical formulation
é of a well-defi{ned physical problem:
1) g = 0: Weo, (3.1), (3.2), (7.1), (13.1)
$18) ¢ = 1 (3.1). (3.2), (7.2) and one of [(h.2),(h.3).(8)]. (13.2)
f1i) n = 0 or 1:
, a) non-inflow: (3.1),(9),(10), uw =0 (13.3)
f or, (3.1),(9),(10).(8). (13.4)
b) forced inflow: (10).(11),(12.1),(12.2) (13.5)
; ¢) pasaive inflow: (10, (1) .(8), w = 0O (13.0)
.;% The above formulation does not consfder the corner points: (n = 0,1:¢ = 0,1).

Several severe problems, which have been consistently jgnored in the literature,
arise at these pointa:

{) There are two sets of equations, corresponding to the two
boundaries, that can be used. QGenerally, one attempte to use
those relationshipa which are forcing the “low configuration.

For example, an alsebraic boundary condition, because of continuity

requirements, {8 considered forcing.

ii) Since the linearized characterinstic equations are in general not
valid, {t may become necearary to use a partial differential equation
directly. For exanple, {f the flovw ia being forced at n = 0, ¢ = 0O,
then {t {a reasonabls to {mpose eqs.(12.1), and (12.2), with h, 20,
and to impose 0, say with ea.(11), but one expecta to ealculate n
from the internal flow. HNowever, neither eqs.(3.2) and (7.1), from
the ¢ = 0 set, nor eas.(10) and (11) from the n = 0 set, can be
applied. In thia case one might he forced to use eq.(3.3), . " 'GP‘
directly.
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Section III: Specification of Boundary Conditions for the Quasisteady Model

The quasisteady equations are obtained from eq.(3) by assuming that w
and v are in quasisteady equilibrium with respect to ® and u[1).

The following equations result:

{
|
1
0 =-ra_ - 2g hanxed (1%.1) |
T z % unchange . @
~ & :i
u, = -Gy, (14.2) 3
|
i
G, = 0, (14.3) |
G, = 0. (1h4.4) 6
3 i
It remains now to study the effect of the quasisteady assumption on the boundary
conditions. The underlyine principle is as follows:
If a boundary equation involves " or';T. and if the (1%)
equation involves flow conditions internal to the region
of commutation, then the equation will be put in quasisteady
equilibrium.

At ¢ = 0 the situation is relatively simnle. w = 0 and eqs.(3.1) and (3.2)
remain unaffected by the quasisteady assumption. According to (15), however,
eq.(7.1) becomes a quasisteady equation. This means that the right side of
eq.(7.1) is set to zero. BRecause of eqs.(1h.3) and (14.h), then, eq.(7.1) in
deleted from the system.

At £ = 1 a similar analysis holds: Fae.(3.1) and (3.2) are still valid, while
eq.(7.2) is deleted. On the other hand, the upper boundary conditions are unaffected
by the quasisteady assumption: Although involving quasisteady variables, these
equations do not require internal conditions of the flow: in fact, the "derivation"

of these equations related to external flow conditions.




i At the lateral boundaries a more complicated situation exists. First note
that eqs.(14.3) and (14.4) were derived only at internal proints of the flow and
need not in principal be imoosed at the boundaries. However, if these equations
are not used at the lateral boundaries, the resulting solution may exhibit steep
gradients. Such gradients will be inconsistent with the scale assumptions upon
which the quasisteady equations are based [1, assumption 2]. (This perhaps relates
E to the discussion in the introduction regarding the results of Oliger and Sundstrom).
One concludes as follows:

The basic quasisteady assumntion [1, assumption 2] requires

that eqs.(14.3) and (1k.4) be applied at all voints of the (16)

lateral boundaries excent nossible at the corner points.

As noted in ref. [1], the effect of the quasisteady equations, eqs.(14.3)

and (14.4), is to remove internal time dependence from the variables w and w.
Boundary conditions must account for the time-dependence: v = 0 at g =0
accomplishes this for w and the uprer boundary condition provides the time
dependence for n. Tt is important to note that eas.(L.2) and (4.3) provide
time dependence relative to the upper flow, while eq.(8) also relates to the
external lateral flow; therefore, if eq.(8) is used at the top it is necessary
to consider the possibility of incurring inconsistencies at the lateral boundaries.
Consider first non-inflow points and assume the upper boundary condition is
either eq.(4.2) or (4.3). If the lateral equation set is civen by (13.3), one
would use eqs.(3.1) and u = O for the quasisteady model, and if the lateral
equation set is given by (13.4), one would use eqs.(3.1) and (8). If the upper
boundary condition is riven by eq.(8), the situation remains the same for equation
set (13.3), but an inconsistency can arise with respect to equation set (13.4).
clearly near { = 1, eq.(8) cannot be used to calculate u "laterally" and n
"vertically". In this case, since it seems reasonable to assume that u can be

obtained from the internal flow, ea.(3.2) has been used directly (this assumes

13
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that the required time-dependence at the lateral boundary is provided by the
upper boundary condition in conjunction with the quasisteady equations).

At forced inflow the situation is reasonably clear. Eq.(10) is deleted
from equation set (13.5) because it involves internal time derivatives of
quasisteady variables, and the algebraic equation (12.2) is deleted because
it is inconsistent with the quasisteady equation, eq.(14.3). The remaining
equations, eqs.(11) and (12.2), are used with the quasisteady model.

At passive inflow points eq.(11) can still be applied in the quasisteady
case. As above, eqs.(10) and w = O are deleted. The remaining equation of
equation set (13.6), namely eq.(8), can be used if the uoper houndary condition
is given by eq.(4.2) or (4.3). If the upper boundary condition is given by
eq.(8), then the same inconsistency, as discussed above, can arise if eq.(8) is
also used at the lateral boundary. This situation has not yet been resolved.
One possible solution might be to again use eq.(3.2) for u (perhaps it is in
some sense the "residue" of the quasisteady limit process relative to eq.(10).
Further study is required for this case.

Summarizing, the quasisteady model consists of eqs.(14.3) and (1Lk.4) at
all points and eqs. (1k.1) and (14.2) at all points except possibly n = 0 or 1.
;;= 0 is imposed at £ = 0. The additional feasible boundary conditions to be

used in conjunction with these equations are summarized in the following table:

Top Boundary non-inflow ' forced inflow | passive inflow
Condition
(4.2) or (L.3) (3.1),u=0
or (11),(12.1) (11).(8)
(3.1), (8) i
B 1
(3.1),u=0 i
(8) or (11),(12.1) ),
(301)’(302)
TABLE 1
14
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Section IV: 1Interna Generated Outflow and flow

The basic numerical scheme can be found in ref.[1] and will not be
repeated here. All boundary conditions are solved implicitly ( that is, at
the forward time step ). For example, at a lateral boundary eq. (3.2) would
be differenced as, -%; u?t} - uz‘;) = -(Gl)?tj ; where one-sided differences
would be used as required. Since eqs.(14.3) and (14.4) are also solved
implicitly, the iteration problem becomes complicated.

The initfial data used for the test problems in ref(1] consisted of a
stationary flow with a lateral pressure gradient in a region of height h and
length I,. Because the lateral boundaries were assumed to be solid walls (u = 0
was the boundary condition), the flow thereby generated vroceeded to reflect from
the boundaries. In the present study, the right boundary will be a free boundary.
The lateral boundary conditions must therefore allow the flow to move through
and then, as it turns out, to move back into the recion. fThese results will be
compared with the following test case: The region is trivled to length 3L,
initial data in 0 < x < L is as above, data for the additional region is stationary
flow with no pressure gradient. This latter problem is solved with the quasisteady
model and u = 0 at the lateral boundaries. During a reasonably long time period,
during which the results at x = [, are independent of the boundery conditions
imposed at x = 3L, the results obtained with the larse recion can be compared with
the free boundary case.

The initial flow field, for the region o < x < 480 ¥m. = I, is as shown in
fig. 1 (this is reproduced from ref.(1]). w and u are zero throughout at time
zero. Overpressure, with no pressure gradient in L < x < 3L, is shown in fig. 2.
For this test case the continuous upper boundary condition, eq.(l.2) was used at
=1, and u = O was imposed at n = 0 and 1. Figure 3 shows pressure at z = (
for various times. Initially a "secondary" pressure front forms near x = L (this

can be seen at t = 1600), but by 2h00 sec. this front {s moving toward the right

15




boundary. This pressure distribution is accompanied by a reverse flow; this
can be seen from figures U and 5, which display the u distribution at g=0
and ¢ = 1.
Ideally, one would now like to specify boundary conditions at x = L so that

the solution thereby obtained would reproduce the above flow in 0 < x < L. It seems
fairly clear that for a problem of this complexity such a pgoal cannot be
attained. Nevertheless, because the flow is internally cenerated, one can
expect to obtain the following with prover boundary conditions:

a) The flow should be qualitatively correct (in this

case outflow and reverse flow should occur in a

generally appropriate time scale).
b) Quantitatively, the results should be comparable.

If inflow occurs, it will be vassive inflow. Thus, the following boundary
conditions are use§ (see table 1): At x = n =0, u = 0 and eq.(3.1), and at
x/L=n =1, eqs.(8) ana (11).

This solution was run until time LO0O sec. In ref.[1] it was shown that
the oscillation time for this boundary condition was approximately 1600 sec.

This implies a wave velocity of L/1600 = 300 ;%z , or about 6400 sec. would be
required for the wave to travel from L to 3l and back. It was felt, therefore,
that for this time period the results should be independent of the boundary
condition at x = 3L.

Boundary condition (8) is intended to represent a situation in which the
external flow is undisturbed. Clearly, for this problem this assumption is not
valid near x = I,. However, it perhaps is satisfied for the flow sufficiently
distant from x = L.

Figure 6 compares the pressure distribution at two times. The solid dots are
the results using eq.(8) at x = L. At time 800 sec. the comparison is very good,

while at time L0O0OO sec. some discrepancy can be seen. Figure T shows the comparison




in u at the top surface. The effect of eq.(8) seems to be to delay somewhat

the development of reverse flow. The author judges this comparison to be good:

In addition to maintaining the time scale of the vnroblem, the results remain
reasonable quantitatively also: It might perhaps also be noted that this is |
considered to be a difficult test case, particularly because of the combined :

inflow-outflow configuration at x = L.

It seems reasonable to supnose that even better agreement could be obtained

by appropriately "tuning" the factor g in eq.(8). ¥For the reasons discussed
in Section 1I, such a procedure was not attempted.

A calculation was also made with eq.(3.2) revlacins the boundary condition
eq.(8): that is, W is calculated at the boundary x = L. The nhysical significance
is not clear, particularly because this condition seems to make no direct assumption
regarding the external flow. It is interesting to note therefore that the results,
not shown, are sensible numerically, but show littie acreement with the results
obtained with the large region. For example, at time L4000 sec., the pressure
distribution has oscillated back essentially to the distribution existing at time

800 sec.
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Section V: Bell-Wave Input at Left Boundary

For this case the initial flow is stationary and hvdrostatic: A:ve 0, % =

- Li;%l‘-. 8(0,x,z) = 8(0,0,2z) and 8{(0,0,2z) is as in the test case of Section IV
o

(1, eq.(22.8)). At x = O u is specified as a function of time:

2 2
16 u (—1\) (; - - : 0<t<e
max\ ¢, c1 1

u(t,0,g) = (17)

0: &> c].

U thereby achieves a maximum of W 88 yie c1/2.

The first calculation uses eq.(8) at the upper boundary. Consequently, from
table 1, eq.(11) and (12.1) were imposed at n = 0 and ecs.(3.1) and (3.2) at
n = 1 (note that inflow at n = 1 does not occur for this case). The values of
umax and ¢, vere taken respectively as 2.5 and 3200. Figure 8 shows the velocity
distribution at the top surface for various times. At time L80Q sec. this wave
has left the region, and the flow, except for a small perturbation of approximately
L%, has returned to a stationary flow. :

This residual flow, which apparently proceeds to oscillate back through the
region with values |u| < .1 and |w| < .005, does not seem to be numerical error.
Rather, it appears to be related to the difficulty noted in Section II of achieving
a true steady-state solution. This difficulty is due to the slow time scale of 6.
At time 6000 sec., the variation of 6 from its values at time zero is still on the
order of 10‘“; this is sufficient to maintain pressure gradients to account for
the values noted above. To partially check this statement, the calculation was

repeated with 8 held constant throughout the region (e~.eo=1.os). The "residual"

values of velocity in this case were |[u| < .001 and [w| < .0001.

The shape of the wave form, as a function of time, is shown in Figure 9. The

curve labeled x = 0 represents eq.(1l7) for the conditions given above. The curve
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labeled x = L represents the velocity curve as it exits the region at the
uprer boundary. Since the region was initially in equilibrium, one expects

the wave to move through relatively unchanged. The curve shown for eq.(8)
indicates that this is the case. In addition, there is no damping of the wave.
The exiting velocity curve at z = 0 is similar to that shown in Figure 9, except
that the maximum value is 2.288.

This problem was next solved with the other two upper boundary conditions.
From table 1, eas.(1ll) and (12.1) are used at n = 0 and eas.(3.1) and (8) are
used at n = 1, Again, the shape of the curve is maintained well. The vertical
distribution is somewhat more pronounced for this case. ¥“or example, the maximum
outflow velocity at £ = 0 is u = 2.151, while the maximum value of'; at ¢ = 1 is
2.505. Figure (10) shows the horizontal velocity distribution at ¢ = 0 for
various times.

For the discontinuous boundary condition, ea.(4.3), the results are markedly
different. Since a small pressure gradient is maintained at the top surface,
horizontal velocity falls off rapidly at the top. In fact, as noted in Figure (11),
the wave does not reach the far boundary, dut instead decays ranidly. This would
indicate that a large amount of energy is being dissipated to the outside upper
region. Velocity at £ = 0 does build up more completely: The maximum value of
uat ( =0, n=%) is 1.5 and occurs at time 2800 sec., while the maximum value
at the right boundary (7= O,n=1) is .1 and occurs at time 3800 sec. By time
L800 sec.,a complete reverse flow exists.

It was also thought of interest to comdbine the urver boundary conditions.
Eqs.(8) and (4.3) together make little sense, since each contains a hydrostatic

pressure term. However, eqs.(8) and (4.2) produce the “ollowing equation:

'-il:_l.)l';,'¢.(!‘_ll_'.(\} +(F\;’)-c'
¢ T A T 3K AR

T
S

’ (18)

Although the precise physical interpretation of e0.(18) is not completely clear,
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the idea is to combine both a vertical effect, namely ea.(4.2), with the horizontal
effect given by ea.(8). Fipure 12 shows results of the calculation using eq.(18)
at the top and egs.(5.1) and (3.2) at the right lateral boundarv. It is seen that
the wvave form is much like that odbtained with the individual ecouations (compare
with Figures 8 and Q). However, there is an important distinction in that eq.(18)
produces some damping of the wave form: The maximum value of u at n = 1 i{s 2.36
and occurs at approximately t = 3100 sec. This damving appears to be totally an
upper boundary effect, unrelated to the lateral boundaries: YNote that the wave
is already devressed by time 2L00 sec. Also, comparison at an earlier time, bdefore
the wave has propagated into the region, shows no appreciable (ifference between
the three cases eq.(8), ea.(h.2), and eq.(28).

The three boundary conditions, eqs.(%.2),(%.3), and (&), differ in another
important characteristic, namely dependence on height. ¥o.(8) was "designed" to
minimize this dependence: The physical assumption that the “low is also being

imposed above { = 1 indicates that the wave vrofile at - = 1 should de relatively

unaffected by the height of the lower region. This was verified by a calculation

vith a height of S km. instead of 10 km. The other two doundary condition, however

assume undisturbed flow above ¥ = 1 and consequently should be height dependent. Q

This dependence is reflected in the form of the equations: Ms.(4.2) and (4.3) ?

involve vertical velocity, which is a quantity very sensitive to height. %
Figure 13 compares two calculations, with heights of 10 Xm. and 5 km. !

respectively, dboth using ea.(4.2) at the ton and the same lateral boundary

conditions as discussed earlier. Tvo features of the flow are particularly

interesting:

1) The smaller region propagates the wave more slowly.
This is verhaps as expected. gince vertical velocity
is smaller and consequently vressure duilds up more
slowly.




2) There is a damping effect related to heicht. The
5 km. case produced a maximum outlet velocity of
1.89 m/sec., while for the 10 km. case the maximum
outlet velocity was shown to be 2.505. Perhaps for
this combination of wave input and boundary condition
the height of 10 km. is some kind of "mapic number':
At this height the wave proparates across the field

in a relativelv unperturbed manner.

Clearly, there is a significant mathematical relationship between the wave

input, the height of the region, and the upper boundary condition. At the

present time what one requires here is a physical explanation of this relationship.

As discussed in ref.[1], the floating top is an important part of the model.
Figure 14 displays the motion of the ton for the case with eq.(8) as the upper
boundary condition. In general this motion parallels the velocity profile, as
can be seen by comparing with Figure 8. This was also true for the cases of
boundary c&nditions (4¥.2) and (18). The maximum verturbation for each of the
three cases (using eq.(8),(L4.2), and (18) respectively) was 87.6 m., 81.75m.,
and 87.4m. For the discontinuous boundary condition, eq.(4.3), the top boundary
rose 241.5 m.

As in the test case of Section IV, the lateral boundary conditions were
tested by increasing the length of the region. The region was doubled in length,
with the boundary conditions formerly imvosed at x = L now being imposed at
x = 2L. Fimures 15 and 16 show typical results of this investigation. This
particular data is from the case with upper boundary condition (18) and right
lateral conditions given by egs.(3.1) and (3.2). The solid lines are the results
obtained with the doubled length, while the solid dots are the results with the
original length of 480km. The agreement at f = 1 is very good, while some

discrepancy builds up a £ = 0. The author concludes that these calculations
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give strong assurance that the lateral boundary conditions, in conjfunction with
the given upper boundary condition, are consistently modeling the hypothesized
physical situation. In this case the hypothesized physical situation is that
of an external flow which is undisturbed "sufficiently far" from the region of
interest.

Accuracy of the computations, relative to mesh size, is considered to be
an important part of a numerical study. Of the three classes of problems
discussed in this naper, the bell-wave problem of this section displayed the
steepest gradients and consequently also displayed the greatest difficulty in
establishing convergence.

As discussed in [1], one should at least be able to demonstrate that the

solutions of a numerical algorithm behave as though they are part of a convergent

sequence of calculations. For a first order method the following criterion was

derived in [1]:

A .
H _(_ 'S\ (19)

h
2

N

vhere Al = f*(t,n,g,h) - f*(1,n,2,5), 42 = f'(r.n.c.g) - f‘*(r.n.c.il). and
£*(t,n,z,h) is the numerical avproximation, obtained with step-size h, to the
variable f(t,n,z).
For the problem using eq.(8) at the upper boundary, the following sequence

of calculations was made:

run 1: Ax = 20 km., Az~'1.25 km., At = 4O sec.,

run 2: Ax = 10 km., Az~ .625 km., At = 20 sec.,

run 3: Ax = 5 km., Az--.3125 km., At = 10 sec.
At time 1600 sec., the following tables display typical results for various

quantities in the flow field:
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u(r,1) wlt.h,1) a0, (1,0)) P(r,%,0)  (6(1,%,%)
run 1 | 15634 | o747 ‘h6.1§L~r__ipjh.hb8 .000006k
run 2 1.4683 .0739 L6, 42 1034.938 |.0000071
run 3 1.4694 0T34 46.20 1035.078 |.0000075

Al -.0049 . 0008 .33 ~-.490 t.0000007
A2 -.0011 . 0005 .22 -.140 F. 0000004
82/81 .224 .625 461 § _ .2066 .57
Table 2
u(r,2,0) |u(r,1,1)|P(x,0,0)] P(r,0,1) [w(1,0,1)
run 1 .0054 .00kl 11038.503) 268.697 .00L9
run 2 -.0002 [-.0007 [1038.915( 28.730 .0013
run 3| -.0011 |<.0012 [1039.014| 268.757 .0001
Al .0056 .0048 —12 -.0L43 .0036
A2 . 0009 .0005 -.099 =, 027 .0012
A2/A) .161 .10k .240 .63 .333
Table 3

In general, criterion (19) is satisfied very well. Af?

actual motion of the top surface and 6 represents the deviation of 6 from its

represents the

initial value: 1In both these cases there is some guestion regarding the
significance of the digits shown in the table. Note also that P(t,0,1) changes
little from its initial value (namely 260.039), while P(t,0,0) changes much

more significantly (from its initial value of 1020.702).

T 0 o i
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Section VI: Flat Wave Input at Left Boundary

The problem is precisely as that discussed in Section V, except that

eq.(17), the input function for u, is renlaced by the following:

o ~c.t?
u(r,0,z) umx(l-e ) (20)

For the sample calculation umax was again 2.5 and cl = 10-6. Using the
upper boundary condition eq.(8) and the lateral boundary conditions (at n = 1)
eqs.(3.1) and (3.2), one obtains the solution depicted in Figures 17 and 18.
The solution at the top surface is as expected: the velocity builds up,
according to eq.(20), and propagates across the field. However, the solution
at £ = 0 was not expected, in that the maximum velocity at n = 0 did not
propagate in the expected time scale. (By time 6000 sec., the profile changes
little from that at time 4000 sec.). The'discrepancy" is apvroximately the
same as that seen earlier in the bell-wave calculation.

Tt is clear, from simple conservation of mass considerations, that the
solution as shown cannot be a steady-state solution. It is also clear, from
calculations with reduced mesh size, that numerical error cannot account for the
unexpected form of the solution. One next needs to ask whether the calculation
satisfies the original time-dependent nroblem. This is difficult to Judge, but
i{f the answer is no, then presumably the quasisteady ecquations are not valid.

As noted in ref[1], the quasisteady equations do introduce errors into

the solution. 1In the present problem this error can bhe seen clearly at n = 0:

The velocity input at n = 0 would, with eas.(3), produce

a pressure increase with a significant non-hydrostatic

vertical variation (at least in the short term). One

expects, over the long term,-that the vertically yropagating
"fast" characteristics will dissipate the "non-hydrostatic"
variation. The quasisteady equations, on the other hand, ignore

the short-term time-development, and thereby inherently assume

e v
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that any ateep gradients at n = 0 are not important

in the long term.
It is not thought that the above error would account for the resulta
shown in Figures 17 and 18, One expects the error introduced by the quasisteady
equations to be manifested, not in the final flow nrofiles, but in the short-
term time scale. Relative to the time-~scale of the problem, this error should 1
be amall.
Referring to eq.(3.2), one sees that the R term {2 the most {mportant

factor in the propagation of u. The coefficient of this term involves only o,

NP R

A calculation with 68 constant should, then, remove much of the vertical variation,

but would not affect the ouasisteady assumptiona, Such a calculation was made,

e P TT—,

with 6 8 1,05, 1In this case the variation in sound speed was even more pronounced:

(cs)hottom i
e = 1,22, The velocity profiles are much like those of Figure 17,

(e ),

s top
except slightly retarded. YHowever, there ia no significant variation between

the top and bottom horizontal velocity. Furthermore, this calculation achieves
a steady-state: By time LLOO sec., the variation in the position of the top

gurface is 1.3m (fromn = 0 ton = 1),and the maximum value of |§| ts L0001,

P A,

A more careful analysis of the original ecaleulation (with variadble @) shows

that the solution, although not in steady-state, {s very slowly varying. For

example, at time 6000 sec. the variation {n the position of the top asurface is
5.52m., and the maximum value of [v] {a .0062. In light of the constant @
calculation, it would appear that the variables u,w, and v are in quasi-steady
equilibrium with respect to the @ field, (This problem of the alowly varying @

was discuased in Section 11).

If one then assumes that the quasisteady model {s producing & valid solution
to the time-dependent problem, one then needs to ask whether or not the solution

i{s phyaically meaningful. As discussed earlier, this question has not yet heen

:\ !“
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ansvered. If the answer is yes, one could develop reasonable confidence in
the boundary conditions. If the answer is no, then one can reexamine various
features of the model, such as the velocity input function, quasisteady forms
of the characteristic equations, and boundary conditions. In any case, physical
significance of the solution needs to be considered.

This problem was also solved with boundary conditions (4.2) and (4.3) at
the top; eqs.(3.1) and (8) were used at the right boundary. With eq.(4.2) the
wave propagates across the region in a reasonable fashion, but a significant
overshoot in velocity (approximately 10%) occurs at the right corner point. It
is not yet clear whether the problem is due to the boundary conditions or to the
corner point equations.

With eq.(4.3) the wave propagates across the field at a much slower velocity.
This can be seen from Figure 19, which disvlays the velocity vrofiles at g = 0
for the two cases at a fixed time. The solution with eq.(4.3) displays another
interesting chafacteristic: Rather than achieving a steadv-state, the flow
continues to push upward into the undisturbed flow. Figure 20 shows the horizontal
velocity at £ = 1. Near n = 0 the flow appears to achieve a linear profile
rather than a constant profile. This, then, vroduces a non-zero vertical velocity
near n = 0, and this in turn allows the flow to push uoward into the region.
This upward motion, in terms of the vosition of the tov surface, is shown in
Figure 21. It is conceivable that an appropriate incoming lateral flow could
move vertically into the less dense fluid, rather than nropvagate horizontally.

Boundary condition (4.3) could be suitable for this type of flow.




Section V1I: Conclusions

For the most part this study is based on the following two assumptions:

1) A boundary condition, by its very nature, must reflect

a physical assumption in regard to the external flow
configuration. Consequently, a provosed physical interpretation ;

should be associated with any provosed boundary condition.

2) Fq.(3) is to be solved in a region of hefsht h and length 1., with
h<<L. Tt is assumed that boundary conditions and initial
conditions to be imposed on Fq.(3) are such that the flow

variables will experience significant variations only over time

[

scales which are large compared to h/l.
Remark: The second of the above iz the basic scale assumntion, and was formulated

in ref.[1] as assumption (?).

D —

A primary purpose of this vparer was to investisate the validity of the

following hypotheses:

1) There exists a significant lack of physical understanding in
regard to several relatively simple flows in an atmospheric
environment. This situation seriously hampers the process of
specifying and evaluating boundary conditions to be used in

mathematical models for large-scale atmospheric flow.

ii) Assume that Fa.(3), together with a given set of boundary and

initial conditions, defines a well-nosed mathematical problem.

It i{s then possible, by consistently avplving the above assumption
(2) to both the partial differential eauations and the boundary
conditions, to obtain well-posed mathematical models whose time-

dependent scale {s suitable for large-scale atmospheric flow.
In support of the first hypothesis, the followins svecific points are noted:

a) Because of the slow reaction time for @, it appears that
actual stendy-staée solutions cannot be reached in the time

scale of these problems. This behavior of 0 needs to be

factored into the physical interpretation of the problem.




b)

c)

In the problem of a wave enterins at a lateral boundary,
several factors may significantly affect the profile of

the propagating waves. These factors include the height

of the region of entry and the choice of the urner boundary
condition. Mathematically, all solutions seemed reasonable.
Consequently, further evaluation requires more physical input

regarding definition of the problem.

In Section IV an example was described in which the solution,
although reasonable mathematically, did not acree with the
solution for the extended region, Again, physical input
(which was not postulated for this particular set of boundary

conditions) is required.

In support of the second hypothesis, the following svecific proints are

noted:

a)

b)

c)

d)

The quasisteady model operates on a time-scale suitable for

large-scale atmospheric flow.

All solutions were shown to be stable and continuously
dependent on the data. (In ref.[1l] it was indicated that
convergence in terms of a decreasing mesh size is a test

of stability).

All solutions shown appear to have a sensible physical
interpretation. However, in one problem (see Section VI)

an overshoot occurred at a corner point: this might indicate
that, for this choice of boundary conditions, the quasisteady

limit was not taken correctly.

The proposed lateral boundary conditions behaved well and it
was shown that they could be interpreted physically. In

particular, the comparison with solutions for an extended

region was very satisfactory.
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FIGURE 2:  OVERPRESSIRE AT INITIAL TIME:2P = P(0,x,2) - P(0,L,z)
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